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ABSTRACT 

Linear Programming is one of the most important techniques adopted in modeling and solving 

different practical optimization problems that arise in industry, commerce and management.  While 

formulating a linear programming model, systems analysis and researchers often tend to include all 

possible constraints. Although some of them may not be binding at the optimal solution.  The Accuracy 

of number of equations and variable needed to model real-life situations are significantly large, and the 

solution process could be time-consuming even solving with computers.  Pre-processing is an important 

technique in the practice of linear programming problem.  Since, the reduction of large scale problem can 

save significant amount of computational effort during the solution of a problem. Many researchers have 

proposed algorithms for selecting necessary constraints in linear programming models. This paper 

proposes a heuristic approach for selecting constraints, a prior to the start of the solution process using 

Intercept Matrix. Rather some of the earlier methods developed for selecting constraints are explained 

and an improved method is also suggested using Intercept Matrix. The developed algorithm is 

implemented and the computational results are also presented.  It shows that the proposed method 

reflects a significant decrease in the computational effort and is one of the best alternative to select the 

necessary constraints prior to solve non-negative linear programming problem. 

KEYWORDS: Constraint Selection, Cosine Simplex Algorithm, Intercept Matrix, Largest Summation 

Rule. 

INTRODUCTION 

Linear Programming Problem (LPP) represents a mathematical model for solving numerous 

practical problems such as the optimal allocation of resources. 

Linear Programming consist of two important ingredients 

1. The objective function. 

2. Constraint 

both of which are linear. 

The general form of LPP 

Optimise 
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            Z = CT x 

Subject to the constraints, 

      Ax < b               

        x  > 0                

where x represents the vector  of variables (to be determined), while C and b are vectors of 

(known) coefficients and A is a (known) matrix of coefficients.If the technological coefficients aij ’s ≥ 0, 

then the linear programming problems is said to be non-negative linear programming problems. 

          In solving a LP problem we tend to include all possible constraints it will increase the number 

of iteration and computational effort. To reduce the number of iterations and computational effort we use 

a new technique called constraint selection technique which minimizes the number of constraints used in 

solving LPP.  

DEFINITIONS  

Binding Constraint - Binding constraint (Scarce resource ) is one which passes through the optimum 

solution point. 

Redundant Constraint - A redundant constraint is one that can be removed without causing a change in 

the feasible region. 

Nonbinding Constraints –Non binding constraints (abundant resource) is one which does not pass 

through optimum solution point. 

Constraint Selection Technique - The constraint selection technique begins by solving a sequence of 

sub-problems using only a few of the original constraints [1-3] and [7-8].  If the solution obtained to this 

sub-problem satisfies the remaining constraints, it is optimal for the original LP.  Otherwise, additional 

constraints must be incorporated in a larger sub-problem until a solution is obtained which satisfies all 

the original constraints. 

Consider the following LPP, 

 Max Z = CTx 

Subject to the constraints, 

            Ax < b                                                                                                                            ……. (1)                                 

            x  > 0                

The algorithm finds the optimal solution to (1) by solving a sequence of sub-problems of the form 

     Max Z = CTx 

           Subject to the constraints, 

              AKx < bk                                                                                                                         ……. (2) 
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                x  > 0                

where, Ak is a sub-matrix of A. bk consists of right-hand side values for the constraints corresponding to 

the rows in Ak.  

            The rest of the paper is organized as follows. Section 2 describes the already developed 

algorithm for selecting constraints in solving LPP. Section 3 proposes a new method for selecting 

constraints in LPP. The computational results are presented in section 4, followed by conclusion in 

section 5. 

SOME PRECEDING METHODS FOR SELECTING CONSTRAINTS 

In this section, some of the earlier methods developed for selecting constraints are explained 

and an improved method is suggested making use of matrix of intercept. The developed algorithm is 

implemented using computer programming language C. 

Danny C.Myers & Wei Shih et al (1988) proposes a new algorithm in constraint selection 

techniques which achieves considerable reductions in the constraints used in solving Linear 

Programming problem.  This technique works well for a class of linear programs considered.  This 

technique is simple but effective heuristic approach which obtains solutions to a class of linear 

programming problems with the use of only a small percentage of the original number of constraints.  

This method is guaranteed to converge in m/2 iterations where m is the number of constraints and is not 

dependent upon the problem structure. 

Cosine Simplex Algorithm (Corley H.W. (2006)) 

  Corley H.W, Jay Rosenberger, Wei-Chang Yeh, and T.K.Sung, et al (2006) use the cosine 

criterion at each iteration, and the current relaxed problem involves only a fraction of the original 

constraints.  In small linear programming problems the cosine simplex algorithm solves them more 

efficiently than the standard simplex method.  In addition, it can prevent cycling. 

The cosine simplex algorithm is summarized as follows.  For a given problem it begins by 

solving a relaxed problem consisting of the original objective function subject to a single constraint 

yielding a nonempty bounded feasible region. At each subsequent iterations of the algorithm, the most 

parallel constraint to the objective function among those constraints violated by the solution to the 

current relaxed problem is appended to it.  When no constraints are violated, the solution of the current 

relaxed problem is optimal to the original problem. 

Define row vector i of the matrix A by ai so that constraint i of (1) becomes 

                   , i = 1, 2, . . .m.             (3)              

Define  as  the cosine of the angle θi between the normal vectors  ai  for 

constraint i and c for the objective function. 
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Let                             i = 1,2…m. 

      Assume that (1) has a nonempty feasible region with a constraint r in (3) for which arj > 0, j = 1, 

2, . . n and br > 0.  These assumptions guarantee that (1) has an optimal solution. 

We call a constraint operative if it is a part of the current relaxed problem and inoperative 

otherwise. 

The initial relaxed problem 

Max  z = CTx 

subject to the constraint 

                                                                                                                                  (4) 

            

ALGORITHM 

1. Compute  ,i  = 1,2,…m, i  , and order the constraints  according to 

decreasing Cos., where ties are broken arbitrarily. Let   

i = 1,2…m. 

2. Solve (4), which becomes relaxed problem (1), to obtain x1. Set k = 1. 

    3.     Check the inoperative constraints in decreasing order  

              of Cos .  Take the first one violated by xk and go to        

               Step 4.  If none is found, stop since  x
k
  satisfies  

               problem (1). 

 4.   Set k = k + 1. Append the violated constraint to the final tableau  of relaxed problem k to obtain 

relaxed  k+1   Apply the dual simplex algorithm to obtain a solution xk
  Go to Step 2. 

Largest Summation Rule (LSR) (Danny.C.Myers (1988)) 

The steps of the algorithm is as follows: 

1. Set k= 0. Express each constraint in the following form by dividing each constraint by the 

corresponding right-hand side value. 

where   . 

2. At the initial iteration we set V0={1,2,. . . m}. For each  i Vk , 

             Let 
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and calculate 

     

     

Select the constraints with indices m1 and m2  to add to the sub-problem at this iteration.Let xj
k
 be 

solution obtained by solving the sub-problem at k iteration. 

3. Define } i.e., Vk is the index set of constraints which  are 

violated at the current solution xj
k
 . If Vk =∅  stop. If  Vk consists of only one element, add the 

constraint corresponding to  this index and go to step 4. 

4. Set k = k+1. Then, using the constraints identified in step 2 together with those constraints 

included in earlier iterations, solve (2) to obtain  xk   and return to step 2. 

INTERCEPT  MATRIX  METHOD 

The initial relaxation of Intercept matrix includes those constraints which have an intercept on 

each coordinate axis that is closest to the origin. 

The steps of the algorithm is as follows: 

1. Construct a matrix of intercepts of all the decision variables formed by each of the resource 

constraints along the respective co-ordinate axis. 

               ,        

2.  Identify the smallest of the intercept in each row of the matrix of intercept θji.  

3.  Let    = , for j Є J. Let k be the set containing the column number of 

corresponding βj elements. 

4. Solve the LPP with constraints corresponding to the elements of k. If the solution obtained 

from the above subproblem satisfies all the constraints, Stop. Otherwise go to Step 5. 

5. Calculate θji for which the constraints are violated at the current solution and calculate βj 

and k. Let k1 be the set containing the column number of corresponding βj. Set k = k + k1 

and return to Step 4. 

ILLUSTRATION 

 Selecting the constraints by Cosine Simplex Algorithm, Largest  Summation Rule and proposed 

method is illustrated using following numerical example. 
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Consider the problem, 

Maximize   

Subject to the constraints, 

                                                (3.1) 

                         (3.2) 

                      (3.3) 

                          (3.4) 

                      (3.5) 

                                  , . 

SOLUTION 

COSINE SIMPLEX ALGORITHM  

ITERATION 1  

Step 1: The values for Cos θi are 0.9886, 0.8944, 0.9984, 0.9899 and 0.9995 respectively, since the 

associated Cos θi for (3.5) is maximum. 

Step 2: The first relaxed problem is to be solved by simplex method.  We obtain x1= 0.00, x2=8.00, and 

Z=32. 

Step 3: Constraints (3.3),(3.4)and (3.1) are inoperative constraint and here Cos θi for (3.3) is a maximum.   

Step 4: Add the (3.3) constraint to the existing problem and update the simplex table.  We obtain x1=9.00  

,x2=0.00, and Z=27. 

ITERATION 2 

Step 3: Constraint (3.4) is inoperative. 

Step 4: Add the (3.4) constraint to the existing problem and we obtain x1=3.00, x2=4.00, and Z=25. 

Number of constraint selected in Cosine Simplex Algorithm =3. 

LARGEST SUMMATION RULE 

ITERATION 1 

Step 1: Set V0={1,2,3,4,5} 

Maximize  Z= 3x1+4x2. 

Subject to the constraints 
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                                             (3.6) 

                                              (3.7) 

                                                 (3.8)  

                                                  (3.9) 

                                               (3.10) 

                          , . 

Step 2: Compute         

 

The values for Si    are 0.266, 0.3, 0.277, 0.2857 and 0.255. 

Sm1= S2= 0.3  and Sm2= S4= 0.2857 

Select the constraint (3.2) and (3.4) constraint and solve by using simplex method. We obtain x1 = 0.00  

,x2=7.00, and Z=28. 

Step 3: Constraints (3.1) and (3.3) are violated.  

Step 4: Add (3.1) and (3.3) constraints to the existing problem  

update the simplex table. We obtain x1=3.00  ,x2=4.00, and Z=25. 

Number of constraint selected in Largest Summation Rule = 4. 

INTERCEPT MATRIX METHOD 

ITERATION 1 

Step 1: Let  θji be 

Decision  
variables         1 2 3 4 5 βj k 

x1 15 5 9 7 10 5 2 

x2 5 10 6 7 8 5 1 
 

Solving the constraints (3.2) and (3.1), we obtain x 1= 3.00,  

x2= 4.00, and Z = 25. 

Number of constraints selected in this method = 2. 
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COMPUTATIONAL RESULTS 

                   The efficiency of the algorithm is tested by solving LPP using Simplex method and various 

methods in constraint selection techniques. The following table 1 shows  a comparison of number of 

constraints selected in different methods. Table 2 provides a comparison of computational efforts. The 

tables 1 and 2 shows that the proposed method (Intercept matrix method) is efficient to select the 

constraints in a given LP with minimum computational effort. Figure 1 shows number of constraints used 

in solving linear programming problems and figure 2 shows the amount of computational effort reducing 

the intercept method over the previous methods. 

           Here the problems have the canonical form with  for .   for  

 and  is generated uniformly within the interval (0,100) for  

. 

Table1. Comparison of No. of Constraints Selected in Solving LPP 

SI. No. Size of LPP 
No. of  constraints selected in 

solving LPP 
m n Method1 Method2 Method3 

1 5 2 2 4 2 
2 3 2 1 2 2 
3 4 3 3 2 2 
4 3 2 2 2 1 
5 3 2 3 3 3 
6 3 2 3 2 2 
7 4 3 3 2 1 
8 4 3 4 2 2 
9 4 5 4 2 2 
10 5 2 2 2 2 
11 5 4 2 2 3 
12 3 3 2 3 2 
13 7 10 4 2 2 
14 16 6 4 4 4 
15 20 5 4 2 3 
16 25 6 3 2 2 
17 30 3 4 2 1 
18 40 2 1 2 1 
19 45 3 3 3 2 
20 50 5 4 2 1 

 

m- No. of constraints, n- No. of variables, Method1 - Cosine Simplex Algorithm, Method2 – Largest 

Summation Rule, Method3 – Intercept Matrix Method. 
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Table2. Comparison of Computational effort in Solving LPP 

SI. No. Size of  LPP No. of multiplication/divisions taken to 
solve LPP 

  M n Method1 Method2 Method3 Method4 
1 5 2 175 153 176 60 
2 3 2 32 44 36 33 
3 4 3 98 246 74 69 
4 3 2 62 90 55 34 
5 3 2 91 205 164 143 
6 3 2 62 158 55 52 
7 4 3 51 187 53 39 
8 4 3 98 461 74 69 
9 4 5 177 942 132 125 
10 5 2 118 114 65 60 
11 5 4 141 210 98 93 
12 3 3 71 128 139 89 
13 7 10 481 1405 285 278 
14 16 6 774 1173 439 550 
15 20 5 591 1188 253 247 
16 25 6 888 1501 362 337 
17 30 3 1117 1286 235 195 
18 40 2 1845 414 211 172 
19 45 3 4690 1093 411 317 
20 50 5 2961 2250 583 521 

 

m- No. of constraints, n- No. of variables, Method1 - Simplex method, Method2 – Cosine Simplex 

Algorithm,  

Method3 – Largest Summation Rule, Method4 – Intercept Matrix Method. 
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Figure 1: Comparison of No. of Constraints Selected in Solving LPP 

1 - Cosine Simplex Algorithm, 2 – Largest Summation Rule,  

3 – Intercept Matrix Method. 



38                          Paulraj 

0

100

200

300

400

500

600

700

800

1 2 3 4

co
m

p
u

ta
ti

o
n

al
 e

ff
o

rt

 

Figure 2: Comparison of Average Computational effort in Solving LPP 

1 - Simplex method, 2 – Cosine Simplex Algorithm,  

3 – Largest Summation Rule, 4 – Intercept Matrix Method. 

In Linear programming problem, if (0,0,…0)ε Rn is a feasible point of a given problem, then we 

can apply the intercept method to select the constraint. 

If {x 1,x2,….xn}, x i ≠0 ( atleast one of the decision variable is not equal to zero). In that case  

LSR has to perform n/2 iteration to identify n constraint and in Cosine simplex method we have to 

perform n iteration, whereas in case of  intercept method, we can identify n constraint in the first 

iteration. 

CONCLUSIONS 

           In this paper, we have presented a Intercept matrix method to reduce the number of constraints 

considered in solving a given LPP.  A large number of randomly generated test problems indicate that 

the Intercept matrix method have less computational efforts than the existing algorithms. 
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